Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation

Mg 2 Ni H 4 thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg2NiH4 appears to be stable i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2006-09, Vol.100 (6)
Hauptverfasser: Westerwaal, R. J., Slaman, M., Broedersz, C. P., Borsa, D. M., Dam, B., Griessen, R., Borgschulte, A., Lohstroh, W., Kooi, B., ten Brink, G., Tschersich, K. G., Fleischhauer, H. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mg 2 Ni H 4 thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg2NiH4 appears to be stable in vacuum due to the fact that the dehydrogenation of the Mg2NiH4 phase is kinetically blocked. Hydrogen desorption only takes place when a Pd cap layer is added. The optical band gap of the in situ deposited Mg2NiH4 hydride, 1.75eV, is in good agreement with that of Mg2NiH4 which has been formed ex situ by hydrogenation of metallic Pd capped Mg2Ni films. The microstructure of these in situ grown films is characterized by a homogeneous layer with very small grain sizes. This microstructure suppresses the preferred hydride nucleation at the film/substrate interface which was found in as-grown Mg2Ni thin films that are hydrogenated after deposition.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.2349473