General method to solution-process multilayer polymer light-emitting diodes

An intermediate liquid buffer layer is introduced to overcome the dissolution problem of solution-processed multilayer conjugated polymer light-emitting diodes. This method can be applied to arbitrary combinations of polymers with no restriction on solvents. As an example, a hole-blocking layer is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2006-04, Vol.88 (16)
Hauptverfasser: Tseng, Shin-Rong, Lin, Shi-Chang, Meng, Hsin-Fei, Liao, Hua-Hsien, Yeh, Chi-Hung, Lai, Huan-Chung, Horng, Sheng-Fu, Hsu, Chain-Shu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An intermediate liquid buffer layer is introduced to overcome the dissolution problem of solution-processed multilayer conjugated polymer light-emitting diodes. This method can be applied to arbitrary combinations of polymers with no restriction on solvents. As an example, a hole-blocking layer is successfully spin coated on the common p-type emissive polymer layers. One green- and two blue-emitting polymers are chosen as the emissive layers. The electron-hole balance and efficiency are significantly improved by the addition of hole-blocking layer. The electroluminescence efficiency can be increased up to nine times, while the luminance up to seven times. In particular, 1.5cd∕A is obtained for deep blue emission from poly(9,9-dioctyl-fluorene) with 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene spin coated as the hole-blocking material.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2192574