Spectral transfers and zonal flow dynamics in the generalized Charney-Hasegawa-Mima model
The mechanism of four nonlinearly interacting drift or Rossby waves is used as the basic process underlying the turbulent evolution of both the Charney-Hasegawa-Mima-equation (CHME) and its generalized modification (GCHME). Hasegawa and Kodama’s concept of equivalent action (or quanta) is applied to...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2005-12, Vol.12 (12) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism of four nonlinearly interacting drift or Rossby waves is used as the basic process underlying the turbulent evolution of both the Charney-Hasegawa-Mima-equation (CHME) and its generalized modification (GCHME). Hasegawa and Kodama’s concept of equivalent action (or quanta) is applied to the four-wave system and shown to control the distribution of energy and enstrophy between the modes. A numerical study of the GCHME is described in which the initial state contains a single finite-amplitude drift wave (the pump wave), and all the modulationally unstable modes are present at the same low level (
10
−
6
times the pump amplitude). The simulation shows that at first the fastest-growing modulationally unstable modes dominate but reveals that at a later time, before pump depletion occurs, long- and short-wavelength modes, driven by pairs of fast-growing modes, grow at
2
γ
max
. The numerical simulation illustrates the development of a spectrum of turbulent modes from a finite-amplitude pump wave. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.2139973 |