Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R λ ∼ 280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-11, Vol.17 (11), p.115101-115101-9
Hauptverfasser: Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A., Toschi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R λ ∼ 280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We present data for both the separation distance and the relative velocity statistics. Statistics are measured along the particle pair trajectories both as a function of time and as a function of their separation, i.e., at fixed scales. We compare and contrast both sets of statistics in order to gain insight into the mechanisms governing the separation process. We find very high levels of intermittency in the early stages, that is, for travel times up to order ten Kolmogorov time scales. The fixed scale statistics allow us to quantify anomalous corrections to Richardson diffusion in the inertial range of scales for those pairs that separate rapidly. It also allows a quantitative analysis of intermittency corrections for the relative velocity statistics.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.2130742