The ultrasonic/shear-force microscope: Integrating ultrasonic sensing into a near-field scanning optical microscope

An ultrasonic transducer is incorporated into a near-field scanning optical microscope (NSOM) to augment its versatility to characterize the properties of layers adsorbed to a sample’s surface. Working under typical NSOM operation conditions, the ultrasonic transducer—attached underneath the sample—...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2005-09, Vol.76 (9)
Hauptverfasser: La Rosa, A., Cui, X., McCollum, J., Li, N., Nordstrom, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ultrasonic transducer is incorporated into a near-field scanning optical microscope (NSOM) to augment its versatility to characterize the properties of layers adsorbed to a sample’s surface. Working under typical NSOM operation conditions, the ultrasonic transducer—attached underneath the sample—demonstrates sufficient sensitivity to monitor the waves generated by the tapered NSOM probe that oscillates in the proximity of, and parallel to, the sample’s top surface. This capability makes the newly integrated ultrasonic/shear-force microscope a valuable diagnostic tool in the study of sliding friction and surface phenomena in general. Here, it is used to concurrently and independently monitor the effects that probe-sample interactions exert on the probe (that is attached to a piezoelectric tuning fork) and on the sample (that is attached to the ultrasonic transducer). The signal from the tuning fork (TF) constitutes the so called “shear-force” signal, widely used in NSOM as a feedback to control the probe’s vertical position but whose working mechanism is not yet well understood. Tests involving repeated vertical z motion of the probe towards and away from the sample’s surface reveal that the TF and ultrasonic (US) signals have distinct z dependence. Additionally, where the TF signal showed abrupt changes during the approach, the US changed accordingly. A shift in the probe’s resonance frequency that depends on the probe-sample distance is also observed through both the TF and the US responses. Within the sensitivity of the apparatus, ultrasonic signals were detected only at probe-sample distances where the probe’s resonance frequency had shifted significantly. These measured signals are consistent with a probe entering and leaving a viscoelastic fluid-like film above the sample. The film acts as the medium where waves are generated and coupled to the ultrasonic sensor located beneath the sample. To our knowledge, this is the first reported use of ultrasonic detection for detailed monitoring of the distance dependence of probe-sample interactions, and provides direct evidence of sound as an energy dissipation channel in wear-free friction. This newly integrated ultrasonic/shear-force microscope, which can be implemented with any functionalized proximal probe (including aperture and apertureless NSOM), can become a valuable metrology tool in surface science and technology.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.2052649