High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform

We demonstrate a high-performance, tensile-strained Ge p-i-n photodetector on Si platform with an extended detection spectrum of 650–1605 nm and a 3 dB bandwidth of 8.5 GHz measured at λ=1040nm. The full bandwidth of the photodetector is achieved at a low reverse bias of 1 V, compatible with the low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2005-09, Vol.87 (10)
Hauptverfasser: Liu, Jifeng, Michel, Jurgen, Giziewicz, Wojciech, Pan, Dong, Wada, Kazumi, Cannon, Douglas D., Jongthammanurak, Samerkhae, Danielson, David T., Kimerling, Lionel C., Chen, Jian, Ilday, F. Ömer, Kärtner, Franz X., Yasaitis, John
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a high-performance, tensile-strained Ge p-i-n photodetector on Si platform with an extended detection spectrum of 650–1605 nm and a 3 dB bandwidth of 8.5 GHz measured at λ=1040nm. The full bandwidth of the photodetector is achieved at a low reverse bias of 1 V, compatible with the low driving voltage requirements of Si ultralarge-scale integrated circuits. Due to the direct bandgap shrinkage induced by a 0.20% tensile strain in the Ge layer, the device covers the entire C band and a large part of the L band in telecommunications. The responsivities of the device at 850, 980, 1310, 1550, and 1605 nm are 0.55, 0.68, 0.87, 0.56, and 0.11A∕W, respectively, without antireflection coating. The internal quantum efficiency in the wavelength range of 650–1340 nm is over 90%. The entire device was fabricated using materials and processing that can be implemented in a standard Si complementary metal oxide semiconductor (CMOS) process flow. With high speed, a broad detection spectrum and compatibility with Si CMOS technology, this device is attractive for applications in both telecommunications and integrated optical interconnects.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2037200