Ultrahigh field multiple Gunn domains as the physical reason for superfast (picosecond range) switching of a bipolar GaAs transistor

The superfast (picosecond range) high-current switching observed recently in a GaAs junction bipolar transistor is explained by practically homogeneous carrier generation in the volume of the switching channels by a moving train of avalanching Gunn domains of large amplitude. The very fast ( ∼ 200 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2005-01, Vol.97 (2), p.024502-024502-9
Hauptverfasser: Vainshtein, S. N., Yuferev, V. S., Kostamovaara, J. T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The superfast (picosecond range) high-current switching observed recently in a GaAs junction bipolar transistor is explained by practically homogeneous carrier generation in the volume of the switching channels by a moving train of avalanching Gunn domains of large amplitude. The very fast ( ∼ 200 ps ) reduction in the collector voltage is determined by shrinkage of each domain, provided the negative electron mobility in ultrahigh electric fields is taken into account and current filamentation takes place. The results of one-dimensional simulations show good quantitative agreement with experimental voltage and current wave forms when the simulated switching area is equal to the summed areas of the filaments observed in the experiment.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1839638