Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures

Memory devices have been fabricated in high-electron-mobility transistors with embedded InAs quantum dots (QDs). We show that memory operations can be fully controlled by gate biases at room temperature, without the need for light excitations to erase memory states. Real-time measurements indicate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2004-12, Vol.85 (24), p.5911-5913
Hauptverfasser: Balocco, C., Song, A. M., Missous, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memory devices have been fabricated in high-electron-mobility transistors with embedded InAs quantum dots (QDs). We show that memory operations can be fully controlled by gate biases at room temperature, without the need for light excitations to erase memory states. Real-time measurements indicate a charge retention time of a few minutes. Neither such retention time nor the self-consistent simulations can justify the picture that the memory effect is due to charging/discharging of intrinsic QD states. Experiments at a series of gate biases point to the presence of deep levels coexisting in the QD layer(s), which are responsible for the memory effect.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1831558