Correlation of strain, wing tilt, dislocation density, and photoluminescence in epitaxial lateral overgrown GaN on SiC substrates

Epitaxial lateral overgrown (ELOG) gallium nitride (GaN) on SiC is being studied as a possible substrate for blue laser diodes. A defect density below 2.2×107cm−2 in the wings, compared to 2×109cm−2 in the windows, was achieved. Interaction of the overgrown GaN with the SiO2 mask causes a few degree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2004-10, Vol.96 (7), p.3666-3672
Hauptverfasser: Gmeinwieser, N., Engl, K., Gottfriedsen, P., Schwarz, U. T., Zweck, J., Wegscheider, W., Miller, S., Lugauer, H.-J., Leber, A., Weimar, A., Lell, A., Härle, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epitaxial lateral overgrown (ELOG) gallium nitride (GaN) on SiC is being studied as a possible substrate for blue laser diodes. A defect density below 2.2×107cm−2 in the wings, compared to 2×109cm−2 in the windows, was achieved. Interaction of the overgrown GaN with the SiO2 mask causes a few degree wing tilt and a transition region of high defect density between windows and wings. Diminished PL, strong tensile stress, and a defect correlated line at around 3.4eV emerge in this up to two-micron-wide transition region. By changing the mask material from SiO2 to SiN we were able to reduce the wing tilt drastically to below 0.7°. This eliminates the defective transition region and extends the low strain and the low defect density area of the ELOG wings. The methods used to study strain, wing tilt, and threading dislocations in the ELOG samples are microphotoluminescence (μPL), transmission electron microscopy, x–ray diffraction, and scanning electron microscope. We also demonstrate the use of the first momentum of the μPL spectra as an effective means to measure strain distribution.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1784617