Variable temperature film and contact resistance measurements on operating n -channel organic thin film transistors

We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N′-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI–C5). The structure of polycrystalline thin films of PTCDI–C5 was studied using x-ray diffraction and atomic force microscopy. Films order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2004-06, Vol.95 (11), p.6396-6405
Hauptverfasser: Chesterfield, Reid J., McKeen, John C., Newman, Christopher R., Frisbie, C. Daniel, Ewbank, Paul C., Mann, Kent R., Miller, Larry L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N′-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI–C5). The structure of polycrystalline thin films of PTCDI–C5 was studied using x-ray diffraction and atomic force microscopy. Films order with single crystal-like packing, and the direction of π-π overlap is in the substrate plane. Organic thin film transistors (OTFTs) based on PTCDI–C5 were fabricated on hydrophobic and hydrophilic substrates. OTFTs showed effective mobility as high as 0.1 cm2/V s. Contact resistance of operating OTFTs was studied using resistance versus length plots and a four-probe method for three different contact metals (Au, Ag, Ca). Typical OTFTs had a specific contact resistance of 8×104 Ω cm at high gate voltage. There was no dependence of contact resistance with contact metal. Variable temperature measurements revealed that film resistance in the OTFT was activated in the temperature range 100–300 K, with typical activation energies of 60–80 meV. Contact resistance showed similar activated behavior, implying that the Schottky barrier at the contact is not the limiting resistance for the contact. Film resistance data showed a Meyer–Neldel relationship with characteristic energy EMN=20–25 meV, for various samples. The common TFT instability of threshold voltage shift (TVS) was observed in PTCDI–C5 OTFTs. A model is proposed to explain positive TVS in gate bias stress and oxygen exposure experiments. The model is based on the formation of a metastable complex between PTCDI–C5 and oxygen, which creates a deep acceptor-like trap state.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1710729