A Steady-State Heat Flow Problem for a Quarter Infinite Solid

The steady-state temperature field T(x, y) in a homogeneous solid x≥0, y≥0, z arbitrary is studied when the flow out the face y=0 is a prescribed function g(x). Along the face x=0 either the condition T=0 or k(∂T/∂x) = hT is assumed. Of especial interest is the temperature at the face y=0 and the fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1952-01, Vol.23 (4), p.492-494
1. Verfasser: Karush, William
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The steady-state temperature field T(x, y) in a homogeneous solid x≥0, y≥0, z arbitrary is studied when the flow out the face y=0 is a prescribed function g(x). Along the face x=0 either the condition T=0 or k(∂T/∂x) = hT is assumed. Of especial interest is the temperature at the face y=0 and the flow at the face x=0; particular attention is paid to the case g(x)=0 for x>a>0. The results have application to situations in which heat is being drawn off at the corner of a solid.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1702232