Detecting noise in a time series

A numerical algorithm is presented for estimating whether, and roughly to what extent, a time series is noise corrupted. Using phase-randomized surrogates constructed from the original signal, metrics are defined which can be used to quantify the noise level. A saturation occurs in these metrics at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 1997-09, Vol.7 (3), p.414-422
Hauptverfasser: Cellucci, C. J., Albano, A. M., Rapp, P. E., Pittenger, R. A., Josiassen, R. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical algorithm is presented for estimating whether, and roughly to what extent, a time series is noise corrupted. Using phase-randomized surrogates constructed from the original signal, metrics are defined which can be used to quantify the noise level. A saturation occurs in these metrics at signal to noise ratios (SNRs) of around 0 dB and below, and also at around 20 dB and above. In between these two regions there is a monotonic transition in the value of the metrics from one region to the other corresponding to changes in the SNR.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.166214