A 50-nm-gate-length erbium-silicided n -type Schottky barrier metal-oxide-semiconductor field-effect transistor
The theoretical and experimental current–voltage characteristics of 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistors (SB-MOSFETs) are discussed. The manufactured 50-nm-gate-length n-type SB-MOSFET shows large on/off current ratio with low...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2004-02, Vol.84 (5), p.741-743 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theoretical and experimental current–voltage characteristics of 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistors (SB-MOSFETs) are discussed. The manufactured 50-nm-gate-length n-type SB-MOSFET shows large on/off current ratio with low leakage current less than 10−4 μA/μm. The saturation current is 120 μA/μm when drain and gate voltage is 1 and 3 V, respectively. The experimental current–voltage characteristics of 50-nm-gate-length n-type SB-MOSFET are fitted using newly developed theoretical model. From the theoretical analysis, the off- and on-current is mainly attributed to the thermionic and tunneling current, respectively. The decrease of tunneling distance at silicon/silicide Schottky junction with the increase of drain voltage gives the increase of tunneling current. This phenomenon is explained by using drain-induced Schottky barrier thickness thinning effect. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1645665 |