The effect of asymmetric gas puffing on toroidal flow in the edge of tokamak plasma

The neoclassical theory of toroidal plasma rotation in the presence of an asymmetric neutral gas source in the edge of tokamak is examined. The poloidal dependence of momentum damping and ion energy loss due to charge-exchange processes are included. It is shown that the toroidal flow velocity incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2004-01, Vol.11 (1), p.129-139
Hauptverfasser: Singh, Raghvendra, Rogister, Andre, Kaw, Predhiman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The neoclassical theory of toroidal plasma rotation in the presence of an asymmetric neutral gas source in the edge of tokamak is examined. The poloidal dependence of momentum damping and ion energy loss due to charge-exchange processes are included. It is shown that the toroidal flow velocity increases significantly if the gas is fueled from the inboard side of the tokamak; the radial electric field and its shear are modified accordingly. It is also shown that for a fixed gas-fueling rate, the asymmetric fueling has a smaller role in TEXTOR [G. Mank et al., Phys. Rev. Lett. 85, 2312 (2000)] than in COMPASS-D [M. Valovi et al., Plasma Phys. Controlled Fusion 44, A175 (2002)]. The role of asymmetric gas injection is therefore effectively stronger in COMPASS-D.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.1633558