Semiclassical nonlinear Schrödinger on the half line
We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert facto...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2003-12, Vol.44 (12), p.5849-5868 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5868 |
---|---|
container_issue | 12 |
container_start_page | 5849 |
container_title | Journal of mathematical physics |
container_volume | 44 |
creator | Kamvissis, Spyridon |
description | We are studying the semiclassical limit of the
1+1
dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one. |
doi_str_mv | 10.1063/1.1624091 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1624091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</originalsourceid><addsrcrecordid>eNp9z8FKAzEUBdAgCtbqwj_IVmHqe0kmkyylaBUKLqrrIWbeOJFppiSD4I_5A_6YlhZdCK7u4h4uXMbOEWYIWl7hDLVQYPGATRCMLSpdmkM2ARCiEMqYY3aS8ysAolFqwsoVrYPvXc7Bu57HIfYhkkt85bv0-dGE-EKJD5GPHfHO9S3f9qfsqHV9prN9TtnT7c3j_K5YPizu59fLwkspxqJRoBGfsZWgrLZSt56E1hIbqsiIRlqSlStNaQgkGEEknLZagJJolbdyyi52uz4NOSdq600Ka5fea4R6-7fGev_3217ubPZhdGMY4g9-G9IvrDdN-x_-u_wFOolicw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiclassical nonlinear Schrödinger on the half line</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kamvissis, Spyridon</creator><creatorcontrib>Kamvissis, Spyridon</creatorcontrib><description>We are studying the semiclassical limit of the
1+1
dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1624091</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2003-12, Vol.44 (12), p.5849-5868</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</citedby><cites>FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1624091$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76130,76136</link.rule.ids></links><search><creatorcontrib>Kamvissis, Spyridon</creatorcontrib><title>Semiclassical nonlinear Schrödinger on the half line</title><title>Journal of mathematical physics</title><description>We are studying the semiclassical limit of the
1+1
dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9z8FKAzEUBdAgCtbqwj_IVmHqe0kmkyylaBUKLqrrIWbeOJFppiSD4I_5A_6YlhZdCK7u4h4uXMbOEWYIWl7hDLVQYPGATRCMLSpdmkM2ARCiEMqYY3aS8ysAolFqwsoVrYPvXc7Bu57HIfYhkkt85bv0-dGE-EKJD5GPHfHO9S3f9qfsqHV9prN9TtnT7c3j_K5YPizu59fLwkspxqJRoBGfsZWgrLZSt56E1hIbqsiIRlqSlStNaQgkGEEknLZagJJolbdyyi52uz4NOSdq600Ka5fea4R6-7fGev_3217ubPZhdGMY4g9-G9IvrDdN-x_-u_wFOolicw</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Kamvissis, Spyridon</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200312</creationdate><title>Semiclassical nonlinear Schrödinger on the half line</title><author>Kamvissis, Spyridon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamvissis, Spyridon</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamvissis, Spyridon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical nonlinear Schrödinger on the half line</atitle><jtitle>Journal of mathematical physics</jtitle><date>2003-12</date><risdate>2003</risdate><volume>44</volume><issue>12</issue><spage>5849</spage><epage>5868</epage><pages>5849-5868</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We are studying the semiclassical limit of the
1+1
dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.</abstract><doi>10.1063/1.1624091</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2003-12, Vol.44 (12), p.5849-5868 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1624091 |
source | AIP Journals Complete; AIP Digital Archive |
title | Semiclassical nonlinear Schrödinger on the half line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20nonlinear%20Schr%C3%B6dinger%20on%20the%20half%20line&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kamvissis,%20Spyridon&rft.date=2003-12&rft.volume=44&rft.issue=12&rft.spage=5849&rft.epage=5868&rft.pages=5849-5868&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1624091&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |