Semiclassical nonlinear Schrödinger on the half line

We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2003-12, Vol.44 (12), p.5849-5868
1. Verfasser: Kamvissis, Spyridon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5868
container_issue 12
container_start_page 5849
container_title Journal of mathematical physics
container_volume 44
creator Kamvissis, Spyridon
description We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.
doi_str_mv 10.1063/1.1624091
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1624091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</originalsourceid><addsrcrecordid>eNp9z8FKAzEUBdAgCtbqwj_IVmHqe0kmkyylaBUKLqrrIWbeOJFppiSD4I_5A_6YlhZdCK7u4h4uXMbOEWYIWl7hDLVQYPGATRCMLSpdmkM2ARCiEMqYY3aS8ysAolFqwsoVrYPvXc7Bu57HIfYhkkt85bv0-dGE-EKJD5GPHfHO9S3f9qfsqHV9prN9TtnT7c3j_K5YPizu59fLwkspxqJRoBGfsZWgrLZSt56E1hIbqsiIRlqSlStNaQgkGEEknLZagJJolbdyyi52uz4NOSdq600Ka5fea4R6-7fGev_3217ubPZhdGMY4g9-G9IvrDdN-x_-u_wFOolicw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiclassical nonlinear Schrödinger on the half line</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kamvissis, Spyridon</creator><creatorcontrib>Kamvissis, Spyridon</creatorcontrib><description>We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1624091</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2003-12, Vol.44 (12), p.5849-5868</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</citedby><cites>FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1624091$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76130,76136</link.rule.ids></links><search><creatorcontrib>Kamvissis, Spyridon</creatorcontrib><title>Semiclassical nonlinear Schrödinger on the half line</title><title>Journal of mathematical physics</title><description>We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9z8FKAzEUBdAgCtbqwj_IVmHqe0kmkyylaBUKLqrrIWbeOJFppiSD4I_5A_6YlhZdCK7u4h4uXMbOEWYIWl7hDLVQYPGATRCMLSpdmkM2ARCiEMqYY3aS8ysAolFqwsoVrYPvXc7Bu57HIfYhkkt85bv0-dGE-EKJD5GPHfHO9S3f9qfsqHV9prN9TtnT7c3j_K5YPizu59fLwkspxqJRoBGfsZWgrLZSt56E1hIbqsiIRlqSlStNaQgkGEEknLZagJJolbdyyi52uz4NOSdq600Ka5fea4R6-7fGev_3217ubPZhdGMY4g9-G9IvrDdN-x_-u_wFOolicw</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Kamvissis, Spyridon</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200312</creationdate><title>Semiclassical nonlinear Schrödinger on the half line</title><author>Kamvissis, Spyridon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d40611b1f30496936fce26631de7e82d39e37a5858e03082ee2a6962043194c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamvissis, Spyridon</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamvissis, Spyridon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical nonlinear Schrödinger on the half line</atitle><jtitle>Journal of mathematical physics</jtitle><date>2003-12</date><risdate>2003</risdate><volume>44</volume><issue>12</issue><spage>5849</spage><epage>5868</epage><pages>5849-5868</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.</abstract><doi>10.1063/1.1624091</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2003-12, Vol.44 (12), p.5849-5868
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_1624091
source AIP Journals Complete; AIP Digital Archive
title Semiclassical nonlinear Schrödinger on the half line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20nonlinear%20Schr%C3%B6dinger%20on%20the%20half%20line&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kamvissis,%20Spyridon&rft.date=2003-12&rft.volume=44&rft.issue=12&rft.spage=5849&rft.epage=5868&rft.pages=5849-5868&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1624091&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true