Semiclassical nonlinear Schrödinger on the half line

We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2003-12, Vol.44 (12), p.5849-5868
1. Verfasser: Kamvissis, Spyridon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1624091