Semiclassical nonlinear Schrödinger on the half line
We are studying the semiclassical limit of the 1+1 dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert facto...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2003-12, Vol.44 (12), p.5849-5868 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We are studying the semiclassical limit of the
1+1
dimensional integrable nonlinear Schrödinger equation with defocusing cubic nonlinearity on the half line. Our analysis relies on the recent theory of Fokas et al., which reduces boundary value problems for soliton equations to Riemann–Hilbert factorization problems. We employ the method of nonlinear steepest descent to asymptotically deform the given Riemann–Hilbert problem to an explicilty solvable one. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1624091 |