Hydrogen bond dynamics in liquid methanol

A Car–Parrinello molecular dynamics simulation has been performed on fully deuterated liquid methanol. The results are compared with the latest available experimental and theoretical data. It is shown that the liquid is aggregated in chains of hydrogen bonded molecules. The structure of the aggregat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2003-10, Vol.119 (13), p.6655-6662
Hauptverfasser: Pagliai, Marco, Cardini, Gianni, Righini, Roberto, Schettino, Vincenzo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Car–Parrinello molecular dynamics simulation has been performed on fully deuterated liquid methanol. The results are compared with the latest available experimental and theoretical data. It is shown that the liquid is aggregated in chains of hydrogen bonded molecules. The structure of the aggregates is characterized and it is found that the dynamics includes a fast and a slow regime. The weak H bond formed by the methyl group hydrogens and oxygen atom of surrounding molecules has been characterized. The importance of inductive effects is shown and discussed in terms of maximally localized Wannier function centers. Special attention is devoted to clarify how the molecular dipole moment depends on the number of H bonds formed by each molecule. The IR spectrum is computed and analyzed in terms of H-bond interactions. Insights on the short time dynamics and on the H-bond network are illustrated.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1605093