Electrical and chemical characterization of the Schottky barrier formed between clean n-GaN(0001) surfaces and Pt, Au, and Ag

Platinum, gold, and silver formed abrupt, unreacted, smooth, and epitaxial metal–semiconductor interfaces when deposited from the vapor onto clean, n-type GaN(0001) films. The Schottky barrier heights, determined from data acquired using x-ray photoelectron spectroscopy, ultraviolet photoelectron sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2003-09, Vol.94 (6), p.3939-3948
Hauptverfasser: Tracy, K. M., Hartlieb, P. J., Einfeldt, S., Davis, R. F., Hurt, E. H., Nemanich, R. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platinum, gold, and silver formed abrupt, unreacted, smooth, and epitaxial metal–semiconductor interfaces when deposited from the vapor onto clean, n-type GaN(0001) films. The Schottky barrier heights, determined from data acquired using x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, capacitance–voltage, and current–voltage measurements agreed to within the experimental error for each contact metal and had the values of 1.2±0.1, 0.9±0.1, and 0.6±0.1 eV for Pt, Au, and Ag, respectively. The band bending and the electron affinity at the clean n-GaN surface were 0.3±0.1 and 3.1±0.1 eV, respectively. The barrier height is proportional to the metal work function, indicating that the Fermi level is not pinned at the GaN surface. However, discrepancies to the Schottky–Mott model were found as evidenced by a proportionality factor of 0.44 between the work function of the metal and the resulting Schottky barrier height. The sum of these discrepancies constitute the interface dipole contributions to the Schottky barrier height which were measured to be ∼1.4, 1.3, and 0.7 eV for Pt, Au, and Ag, respectively.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1598630