Development of a multistage laser frequency stabilization for an interferometric gravitational-wave detector
Laser frequency stabilization is essential for interferometric gravitational-wave detectors to attain their target sensitivity. We have designed a multistage laser frequency stabilization system which has been applied in the development of the TAMA 300 gravitational-wave detector in Japan. The contr...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2003-09, Vol.74 (9), p.4176-4183 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser frequency stabilization is essential for interferometric gravitational-wave detectors to attain their target sensitivity. We have designed a multistage laser frequency stabilization system which has been applied in the development of the TAMA 300 gravitational-wave detector in Japan. The control topology consisting of two cascaded loops were employed to secure high feedback gain and reliable detector operation and thus allow the best frequency stability and uninterrupted long-term observation. We achieved simultaneously a frequency stability of
5×10
−5
Hz
/
Hz
,
and a common-mode rejection ratio (which reduces the coupling of frequency noise to spurious signals in the detector) of 37 dB. The developed system enabled us to operate TAMA 300 with sufficient sensitivity and stability that it had the potential to register gravitational-wave events. The system was confirmed to be suitable for a gravitational-wave detector from the observation run of TAMA 300. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.1597958 |