Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors

Stress-induced changes in the imprint and switching behavior of (111)-oriented Pb(Zr,Ti)O3 (PZT)-based capacitors have been studied using piezoresponse force microscopy. Visualization of polarization distribution and d33-loop measurements in individual 1×1.5-μm2 capacitors before and after stress ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2003-07, Vol.83 (4), p.728-730
Hauptverfasser: Gruverman, A., Rodriguez, B. J., Kingon, A. I., Nemanich, R. J., Tagantsev, A. K., Cross, J. S., Tsukada, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stress-induced changes in the imprint and switching behavior of (111)-oriented Pb(Zr,Ti)O3 (PZT)-based capacitors have been studied using piezoresponse force microscopy. Visualization of polarization distribution and d33-loop measurements in individual 1×1.5-μm2 capacitors before and after stress application, generated by substrate bending, provided direct experimental evidence of stress-induced switching. Mechanical stress caused elastic switching in capacitors with the direction of the resulting polarization determined by the sign of the applied stress. In addition, stress application turned capacitors into a heavily imprinted state characterized by strongly shifted hysteresis loops and almost complete backswitching after application of the poling voltage. It is suggested that substrate bending generated a strain gradient in the PZT layer, which produced asymmetric lattice distortion with preferential polarization direction and triggered polarization switching due to the flexoelectric effect.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1593830