Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals
Microcavity structures formed by two-dimensional photonic crystal mirrors with triangular lattice and a crystal period of 280 nm suitable for transmission experiments at about 1 μm were fabricated in III-V semiconductor planar waveguides. The photonic crystals were filled with a liquid crystal of ty...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2003-04, Vol.82 (17), p.2767-2769 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microcavity structures formed by two-dimensional photonic crystal mirrors with triangular lattice and a crystal period of 280 nm suitable for transmission experiments at about 1 μm were fabricated in III-V semiconductor planar waveguides. The photonic crystals were filled with a liquid crystal of type E7. The wavelength of the resonance peak can be shifted by the temperature-dependent refractive index of the liquid crystal. The temperature shift follows the typical refractive index behavior of liquid crystals, with a jump in wavelength at the clearing point (about 60 °C) and a continuous shift below. The wavelength jump is about 4 nm within a few Kelvin, while the total shift amounts to 9 nm between 20 and 70 °C. The experimental results agree well with the calculated temperature dependent photonic band structure by assuming a preferential alignment of the liquid-crystal molecules parallel to the holes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1570921 |