Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy
We report on the growth, structural as well as magnetic characterization of (Ga,Mn)N epitaxial layers grown directly on 4H–SiC(0001) by reactive molecular-beam epitaxy. We focus on two layers grown under identical conditions except for the Mn/Ga flux ratio. Structural characterization reveals that t...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2003-03, Vol.82 (13), p.2077-2079 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the growth, structural as well as magnetic characterization of (Ga,Mn)N epitaxial layers grown directly on 4H–SiC(0001) by reactive molecular-beam epitaxy. We focus on two layers grown under identical conditions except for the Mn/Ga flux ratio. Structural characterization reveals that the sample with the lower Mn content is a uniform alloy, while in the layer with the higher Mn content, Mn-rich clusters are found to be embedded in the (Ga,Mn)N alloy matrix. Although the magnetic behavior of both the samples is similar at low temperatures, showing antiferromagnetic characteristics with a spin-glass transition, the sample with higher Mn content additionally exhibits ferromagnetic properties at and above room temperature. This ferromagnetism most likely originates from the Mn-rich clusters in this sample. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1564292 |