In-plane and out-of-plane uniaxial anisotropies in rectangular arrays of circular dots studied by ferromagnetic resonance
Ferromagnetic resonance at 9.2 GHz (X band) was used to characterize the uniaxial magnetic anisotropies in rectangular arrays of submicron circular Ni dots. The in-plane anisotropy, originated from interdot interactions in the rectangular lattice, and the perpendicular anisotropy, due to individual...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2003-05, Vol.93 (10), p.8418-8420 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ferromagnetic resonance at 9.2 GHz (X band) was used to characterize the uniaxial magnetic anisotropies in rectangular arrays of submicron circular Ni dots. The in-plane anisotropy, originated from interdot interactions in the rectangular lattice, and the perpendicular anisotropy, due to individual dot shape and magnetostriction, were explored. For in-plane dependencies of the resonance field (Hr), the main resonance mode angular dependence was well described by the standard Kittel formula. As the interdot distances decreased from 800 to 50 nm, the in-plane uniaxial anisotropy field changed from 5 to 130 Oe, in reasonable agreement with calculations. Simultaneously, the position of perpendicular Hr increased from 6.38 to 6.83 kOe, also following Kittel’s formula. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1556978 |