Quantum-statistical equilibrium and the “law” of constant Fermi potential
We apply the general quantum-statistical density-matrix formalism to an independent-electron gas within a space-dependent external electric potential, under equilibrium conditions. This problem is analogous to an ideal semiconductor homojunction diode. We solve the resulting equilibrium density-matr...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2003-02, Vol.93 (4), p.2069-2078 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We apply the general quantum-statistical density-matrix formalism to an independent-electron gas within a space-dependent external electric potential, under equilibrium conditions. This problem is analogous to an ideal semiconductor homojunction diode. We solve the resulting equilibrium density-matrix equation using a perturbation theory. Next, we derive a first-order quantum correction to the classical Maxwell-Boltzmann density-potential formula. The correction appears as an added curvature term in external potential. It represents expected quantum-mechanical scattering against a spatially varying potential. Our results indicate that the commonly encountered thermodynamic or statistical-mechanical “law” of constant, equilibrium Fermi potential—with Fermi potential a parameter in the Maxwell-Boltzmann density-potential formula—is not fundamentally exact. In a general space-dependent potential, this “law,” we prove, is simply a classical approximation. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1538318 |