Influence of the quantum-well shape on the light emission characteristics of InGaN/GaN quantum-well structures and light-emitting diodes

Structural and optical properties of various shapes of quantum wells (QWs), including rectangular, triangular, trapezoidal, and polygonal ones are investigated. Photoluminescence (PL) measurements show that the highest light emission efficiency and the best reproducibility in the intensity and wavel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2002-11, Vol.81 (19), p.3552-3554
Hauptverfasser: Shim, H. W., Choi, R. J., Jeong, S. M., Van Vinh, Le, Hong, C.-H., Suh, E.-K., Lee, H. J., Kim, Y.-W., Hwang, Y. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural and optical properties of various shapes of quantum wells (QWs), including rectangular, triangular, trapezoidal, and polygonal ones are investigated. Photoluminescence (PL) measurements show that the highest light emission efficiency and the best reproducibility in the intensity and wavelength are obtained from trapezoidal QWs. The temperature dependence of PL spectra indicates the more localized nature of excitons in the trapezoidal QWs. A plan-view transmission electron microscopy shows that quantum dots (QDs) are formed inside the dislocation loop in trapezoidal QWs. The distribution of QDs in size and composition becomes more uniform with trapezoidal QWs than with rectangular QWs, leading to superior light-emission characteristics. It is suggested that QD engineering and dislocation control are possible, to some extent, by the modulation of the QW shape in InGaN/GaN-based light-emitting devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1519725