Magnetic properties of epitaxially grown semiconducting Zn1−xCoxO thin films by pulsed laser deposition
We have characterized Zn1−xCoxO (x=0.25) films grown on sapphire (0001) substrates by pulsed laser deposition using various growth conditions to investigate the growth condition dependence of properties of Co-doped ZnO films. The substrate temperature (TS) was varied from 300 to 700 °C and the O2 pr...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2002-11, Vol.92 (10), p.6066-6071 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have characterized Zn1−xCoxO (x=0.25) films grown on sapphire (0001) substrates by pulsed laser deposition using various growth conditions to investigate the growth condition dependence of properties of Co-doped ZnO films. The substrate temperature (TS) was varied from 300 to 700 °C and the O2 pressure (PO2) from 10−6 to 10−1 Torr. When TS is relatively low (≲600 °C), homogeneous alloy films with a wurtzite ZnO structure are grown and predominantly paramagnetic, whereas inhomogeneous films of wurtzite ZnO phase mixed with rock-salt CoO and hexagonal Co phases form when TS is relatively high and PO2 is fairly low (≲10−5 Torr). The presence of Co clusters leads to room temperature ferromagnetism in inhomogeneous films. The temperature dependence of the magnetization for the homogeneous Zn1−xCoxO (x=0.25) films shows spin-glass behavior at low temperature and high temperature Curie–Weiss behavior with a large negative value of the Curie–Weiss temperature, indicating strong antiferromagnetic exchange coupling between Co ions in Zn1−xCoxO. We have found that Co can be dissolved in ZnO over 40% under an optimum growth condition of TS=600 °C and PO2=10−5 Torr, where epitaxial homogeneous Zn1−xCoxO (x=0.25) films of the best crystalline quality are obtained. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1513890 |