Reduction of boride enhanced diffusion in MeV-implanted silicon
We demonstrated that implantation of MeV Si ions into a Si substrate can suppress boride-enhanced diffusion (BED) normally associated with a high B concentration layer. In this study, a molecular-beam-epitaxy grown Si layer with a B concentration of 1021/cm3 over a 10 nm region capped with 100 nm Si...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2002-11, Vol.92 (10), p.5793-5797 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrated that implantation of MeV Si ions into a Si substrate can suppress boride-enhanced diffusion (BED) normally associated with a high B concentration layer. In this study, a molecular-beam-epitaxy grown Si layer with a B concentration of 1021/cm3 over a 10 nm region capped with 100 nm Si was used as a source of BED. A sequence of four B delta-doped layers with 100 nm Si spacers was grown prior to the source layer to monitor the diffusion. Half of the sample was implanted with 1 MeV Si ions at a dose of 1016/cm2, followed by annealing at 800, 900, and 1000 °C for different periods of time. For control samples without the MeV Si implant, BED was observed with enhancements of around 40 while the MeV Si-implanted sample showed a reduced, yet nonvanishing, BED with an enhancement of around 8 after annealing at 800 °C for 1 h. Both BED and suppressed BED with MeV implant show transient behavior with decay after annealing for long periods of time. The effect of high energy implant on B diffusion from surface deposited B layer was also discussed. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1513207 |