The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices

The influence of device structure on the open-circuit voltage of polyfluorene-based photovoltaic devices has been investigated. Bilayers of hole- and electron-accepting polyfluorenes have been fabricated using an aqueous “float-off” lamination technique and subsequently incorporated into organic pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2002-10, Vol.92 (8), p.4266-4270
Hauptverfasser: Ramsdale, C. M., Barker, J. A., Arias, A. C., MacKenzie, J. D., Friend, R. H., Greenham, N. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of device structure on the open-circuit voltage of polyfluorene-based photovoltaic devices has been investigated. Bilayers of hole- and electron-accepting polyfluorenes have been fabricated using an aqueous “float-off” lamination technique and subsequently incorporated into organic photovoltaic devices with a range of cathodes and anodes. A scaling of the open-circuit voltage with electrode work function difference has been observed with an additional intensity- dependent contribution from the active layer within the device. This additional contribution is attributed to photoinduced generation of carriers, whereby accumulation of charge at the polymer–polymer heterojunction results in a dipole across the interface and gives rise to a diffusion current that must be counterbalanced by a drift current at open circuit.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1506385