Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches
In this article, we present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the nonequilibr...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2002-10, Vol.92 (7), p.3730-3739 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the nonequilibrium Green’s function equations self-consistently with Poisson’s equation, is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results from this method are benchmarked against solutions from a rigorous two-dimensional discretization of the device Hamiltonian in real space. While doing so, the inherent approximations, regime of validity and the computational efficiency of the mode-space solution are highlighted and discussed. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This article shows that the decoupled mode-space solution is an efficient and accurate simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1503165 |