Twistor representation of null two-surfaces
We present a twistor description for null two-surfaces (null strings) in four-dimensional Minkowski space–time. The Lagrangian density for a variational principle is taken as a surface-forming null bivector. The proposed formulation is reparametrization invariant and free of any algebraic and differ...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2002-10, Vol.43 (10), p.4770-4789 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a twistor description for null two-surfaces (null strings) in four-dimensional Minkowski space–time. The Lagrangian density for a variational principle is taken as a surface-forming null bivector. The proposed formulation is reparametrization invariant and free of any algebraic and differential constraints. The spinor formalism of Cartan–Penrose allows us to derive a nonlinear evolution equation for the world-sheet coordinate
x
a
(τ,σ).
An example of null two-surface given by the two-dimensional self-intersection (caustic) of a null hypersurface is studied. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.1501166 |