Twistor representation of null two-surfaces

We present a twistor description for null two-surfaces (null strings) in four-dimensional Minkowski space–time. The Lagrangian density for a variational principle is taken as a surface-forming null bivector. The proposed formulation is reparametrization invariant and free of any algebraic and differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2002-10, Vol.43 (10), p.4770-4789
1. Verfasser: Ilyenko, Kostyantin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a twistor description for null two-surfaces (null strings) in four-dimensional Minkowski space–time. The Lagrangian density for a variational principle is taken as a surface-forming null bivector. The proposed formulation is reparametrization invariant and free of any algebraic and differential constraints. The spinor formalism of Cartan–Penrose allows us to derive a nonlinear evolution equation for the world-sheet coordinate x a (τ,σ). An example of null two-surface given by the two-dimensional self-intersection (caustic) of a null hypersurface is studied.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1501166