Soret and mass diffusion measurements and molecular dynamics simulations of n -pentane– n -decane mixtures

Soret coefficients and mass diffusion coefficients of three states of the n-pentane–n-decane mixture have been measured by thermal diffusion forced Rayleigh scattering (TDFRS) and are compared with molecular dynamics simulations values. Both equilibrium (EMD), synthetic (S-NEMD), and boundary driven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2002-03, Vol.116 (9), p.3718-3729
Hauptverfasser: Perronace, Andrea, Leppla, Cindy, Leroy, Frédéric, Rousseau, Bernard, Wiegand, Simone
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soret coefficients and mass diffusion coefficients of three states of the n-pentane–n-decane mixture have been measured by thermal diffusion forced Rayleigh scattering (TDFRS) and are compared with molecular dynamics simulations values. Both equilibrium (EMD), synthetic (S-NEMD), and boundary driven (BD-NEMD) nonequilibrium techniques have been applied to compute the phenomenological and the transport coefficients relevant to the Soret effect. It is found that statistical error on cross-coefficients using equilibrium and dynamical S-NEMD is too high to enable any comparison with experiments, whereas stationary S-NEMD and BD-NEMD methods have statistical error less than ≈35%. S-NEMD simulations have been carried out in the center-of-mass reference frame and the resulting transport coefficients transformed to the center-of-volume frame of reference. The mass diffusion coefficients are sensibly affected by this transformation and show the same weight fraction dependence as the experimental value, although a difference of roughly a factor of 1.4 is found. The Soret coefficients are, as expected, unaffected by the frame of reference transformation and a good agreement between experiment and simulations is found.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1436473