Collision of hydrogen atom with single-walled carbon nanotube: Adsorption, insertion, and healing
Interaction of hydrogen atom with (5, 5) single-walled carbon nanotube (SWNT) has been studied over the collision energy range from 1 to 30 eV using a molecular dynamics simulation method. In the energy interval of 1–3 eV, the hydrogen atom can be chemisorbed on the outer wall of the SWNT, provided...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2001-11, Vol.115 (17), p.8152-8156 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interaction of hydrogen atom with (5, 5) single-walled carbon nanotube (SWNT) has been studied over the collision energy range from 1 to 30 eV using a molecular dynamics simulation method. In the energy interval of 1–3 eV, the hydrogen atom can be chemisorbed on the outer wall of the SWNT, provided the impact point is near a vertex carbon atom of a hexagon. The lowest incident energy needed for a hydrogen atom to pass through a hexagon ring on the SWNT is estimated to be 14 eV. Hydrogen atoms that enter into the SWNT would either be encapsulated in it to form endohedral H@tube complex, or escape out of it. The hole on the sidewall of the nanotube induced by the collision of hydrogen atom can be healed after relaxation for several picoseconds. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1409541 |