Alternate current characteristics of SiC powders

Silicon carbide (SiC) powder is used in nonlinear field grading materials. The composite material, consisting of an insulating polymer matrix filled with the SiC grains, is usually a percolated system with established conducting paths. In order to explain the properties, the electrical characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2001-09, Vol.90 (6), p.2870-2878
Hauptverfasser: Mårtensson, E., Gäfvert, U., Önneby, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon carbide (SiC) powder is used in nonlinear field grading materials. The composite material, consisting of an insulating polymer matrix filled with the SiC grains, is usually a percolated system with established conducting paths. In order to explain the properties, the electrical characteristic of the SiC powder itself is of interest. The ac characteristics of SiC powders have been studied by dielectric response, capacitance–voltage, and ac-pulse measurements. The frequency, electric field, and pressure dependencies have been analyzed for green and black SiC, which have different doping. The ac characteristics of green and black SiC powders are governed by both the barrier regions at the SiC-grain contacts and the surrounding matrix. The nonlinear loss is determined by the conduction current at the contacts. Depending on the doping level of the SiC grains, the capacitance may be controlled by either the nonlinear capacitance of the barrier region or the linear capacitance of the surrounding matrix. Each contact zone may be modeled by a nonlinear resistance in parallel with both a nonlinear and a linear capacitance. The components are considered to be frequency independent. However, in order to explain the macroscopic frequency and field dependencies of the SiC powders, the use of a network of unique contact zones with dissimilar properties is suggested.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1392964