Tensor product of principal unitary representations of quantum Lorentz group and Askey–Wilson polynomials

We study the tensor product of principal unitary representations of the quantum Lorentz group, prove a decomposition theorem, and compute the associated intertwiners. We show that these intertwiners can be expressed in terms of complex continuations of 6j symbols of U q (su(2)) . These intertwiners...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2000-11, Vol.41 (11), p.7715-7751
Hauptverfasser: Buffenoir, E., Roche, Ph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the tensor product of principal unitary representations of the quantum Lorentz group, prove a decomposition theorem, and compute the associated intertwiners. We show that these intertwiners can be expressed in terms of complex continuations of 6j symbols of U q (su(2)) . These intertwiners are expressed in terms of q-Racah polynomials and Askey–Wilson polynomials. The orthogonality of these intertwiners imply some relation mixing these two families of polynomials. The simplest of these relations is the orthogonality of Askey–Wilson polynomials.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.1289828