Development of a low-temperature GaN chemical vapor deposition process based on a single molecular source H2GaN3

We report the development of a simple and highly efficient chemical approach to growing GaN thin films between 150 and 700 °C using a single molecular source, H2GaN3. Uncommonly low-temperature growth of nanocrystalline GaN films with a wurtzite structure is readily achieved at 150–200 °C from the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 1999-02, Vol.74 (6), p.883-885
Hauptverfasser: McMurran, Jeff, Kouvetakis, J., Smith, David J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 885
container_issue 6
container_start_page 883
container_title Applied physics letters
container_volume 74
creator McMurran, Jeff
Kouvetakis, J.
Smith, David J.
description We report the development of a simple and highly efficient chemical approach to growing GaN thin films between 150 and 700 °C using a single molecular source, H2GaN3. Uncommonly low-temperature growth of nanocrystalline GaN films with a wurtzite structure is readily achieved at 150–200 °C from the thermodynamically driven decomposition of the precursor via complete elimination of the stable and relatively benign H2 and N2 by-products. Highly oriented columnar growth of crystalline material is obtained on Si at 350–700 °C and heteroepitaxial growth on sapphire at 650 °C. Crucial advantages of this precursor include: significant vapor pressure which permits rapid mass transport at 22 °C; and the facile decomposition pathway of stoichiometric elimination of H2 and N2 over a wide temperature and pressure range which allows film growth at very low temperatures and pressures (10−4–10−8 Torr) with growth rates up to 80 nm per minute.
doi_str_mv 10.1063/1.123398
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_123398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_123398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-4f6ec71cfa698987ea4c1bc601f0d17758a2b9e6290ac0522d43ac876173967e3</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWKvgT3hHL1vzNt1kc5SqVSh60fPymn2rK9kmJNuK_96VehpmGD6YEeIa5QKlVre4wFIpW5-IGUpjCoVYn4qZlFIV2lZ4Li5y_ppsNdVmIt7zgX2IA-9GCB0Q-PBdjDxETjTuE8OaXsB98tA78nCgGBK0HEPuxz7sIKbgOGfYUuYWpoAg97sPzzAEz27vKUEO--QYnsoJpS7FWUc-89W_zsX748Pb6qnYvK6fV3ebwpVlNRbLTrMz6DrStra1YVo63DotsZMtGlPVVG4t69JKctOWsl0qcrXRaJTVhtVc3By5LoWcE3dNTP1A6adB2fw91WBzfEr9AmWMW1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a low-temperature GaN chemical vapor deposition process based on a single molecular source H2GaN3</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>McMurran, Jeff ; Kouvetakis, J. ; Smith, David J.</creator><creatorcontrib>McMurran, Jeff ; Kouvetakis, J. ; Smith, David J.</creatorcontrib><description>We report the development of a simple and highly efficient chemical approach to growing GaN thin films between 150 and 700 °C using a single molecular source, H2GaN3. Uncommonly low-temperature growth of nanocrystalline GaN films with a wurtzite structure is readily achieved at 150–200 °C from the thermodynamically driven decomposition of the precursor via complete elimination of the stable and relatively benign H2 and N2 by-products. Highly oriented columnar growth of crystalline material is obtained on Si at 350–700 °C and heteroepitaxial growth on sapphire at 650 °C. Crucial advantages of this precursor include: significant vapor pressure which permits rapid mass transport at 22 °C; and the facile decomposition pathway of stoichiometric elimination of H2 and N2 over a wide temperature and pressure range which allows film growth at very low temperatures and pressures (10−4–10−8 Torr) with growth rates up to 80 nm per minute.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.123398</identifier><language>eng</language><ispartof>Applied physics letters, 1999-02, Vol.74 (6), p.883-885</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-4f6ec71cfa698987ea4c1bc601f0d17758a2b9e6290ac0522d43ac876173967e3</citedby><cites>FETCH-LOGICAL-c225t-4f6ec71cfa698987ea4c1bc601f0d17758a2b9e6290ac0522d43ac876173967e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>McMurran, Jeff</creatorcontrib><creatorcontrib>Kouvetakis, J.</creatorcontrib><creatorcontrib>Smith, David J.</creatorcontrib><title>Development of a low-temperature GaN chemical vapor deposition process based on a single molecular source H2GaN3</title><title>Applied physics letters</title><description>We report the development of a simple and highly efficient chemical approach to growing GaN thin films between 150 and 700 °C using a single molecular source, H2GaN3. Uncommonly low-temperature growth of nanocrystalline GaN films with a wurtzite structure is readily achieved at 150–200 °C from the thermodynamically driven decomposition of the precursor via complete elimination of the stable and relatively benign H2 and N2 by-products. Highly oriented columnar growth of crystalline material is obtained on Si at 350–700 °C and heteroepitaxial growth on sapphire at 650 °C. Crucial advantages of this precursor include: significant vapor pressure which permits rapid mass transport at 22 °C; and the facile decomposition pathway of stoichiometric elimination of H2 and N2 over a wide temperature and pressure range which allows film growth at very low temperatures and pressures (10−4–10−8 Torr) with growth rates up to 80 nm per minute.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEUhIMoWKvgT3hHL1vzNt1kc5SqVSh60fPymn2rK9kmJNuK_96VehpmGD6YEeIa5QKlVre4wFIpW5-IGUpjCoVYn4qZlFIV2lZ4Li5y_ppsNdVmIt7zgX2IA-9GCB0Q-PBdjDxETjTuE8OaXsB98tA78nCgGBK0HEPuxz7sIKbgOGfYUuYWpoAg97sPzzAEz27vKUEO--QYnsoJpS7FWUc-89W_zsX748Pb6qnYvK6fV3ebwpVlNRbLTrMz6DrStra1YVo63DotsZMtGlPVVG4t69JKctOWsl0qcrXRaJTVhtVc3By5LoWcE3dNTP1A6adB2fw91WBzfEr9AmWMW1M</recordid><startdate>19990208</startdate><enddate>19990208</enddate><creator>McMurran, Jeff</creator><creator>Kouvetakis, J.</creator><creator>Smith, David J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990208</creationdate><title>Development of a low-temperature GaN chemical vapor deposition process based on a single molecular source H2GaN3</title><author>McMurran, Jeff ; Kouvetakis, J. ; Smith, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-4f6ec71cfa698987ea4c1bc601f0d17758a2b9e6290ac0522d43ac876173967e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMurran, Jeff</creatorcontrib><creatorcontrib>Kouvetakis, J.</creatorcontrib><creatorcontrib>Smith, David J.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMurran, Jeff</au><au>Kouvetakis, J.</au><au>Smith, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a low-temperature GaN chemical vapor deposition process based on a single molecular source H2GaN3</atitle><jtitle>Applied physics letters</jtitle><date>1999-02-08</date><risdate>1999</risdate><volume>74</volume><issue>6</issue><spage>883</spage><epage>885</epage><pages>883-885</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We report the development of a simple and highly efficient chemical approach to growing GaN thin films between 150 and 700 °C using a single molecular source, H2GaN3. Uncommonly low-temperature growth of nanocrystalline GaN films with a wurtzite structure is readily achieved at 150–200 °C from the thermodynamically driven decomposition of the precursor via complete elimination of the stable and relatively benign H2 and N2 by-products. Highly oriented columnar growth of crystalline material is obtained on Si at 350–700 °C and heteroepitaxial growth on sapphire at 650 °C. Crucial advantages of this precursor include: significant vapor pressure which permits rapid mass transport at 22 °C; and the facile decomposition pathway of stoichiometric elimination of H2 and N2 over a wide temperature and pressure range which allows film growth at very low temperatures and pressures (10−4–10−8 Torr) with growth rates up to 80 nm per minute.</abstract><doi>10.1063/1.123398</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 1999-02, Vol.74 (6), p.883-885
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_123398
source AIP Journals Complete; AIP Digital Archive
title Development of a low-temperature GaN chemical vapor deposition process based on a single molecular source H2GaN3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20low-temperature%20GaN%20chemical%20vapor%20deposition%20process%20based%20on%20a%20single%20molecular%20source%20H2GaN3&rft.jtitle=Applied%20physics%20letters&rft.au=McMurran,%20Jeff&rft.date=1999-02-08&rft.volume=74&rft.issue=6&rft.spage=883&rft.epage=885&rft.pages=883-885&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.123398&rft_dat=%3Ccrossref%3E10_1063_1_123398%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true