Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals
The three-dimensional photonic crystals used in this study were synthetic opals, composed of submicron silica spheres, close-packed in a face-centered cubic structure with a period of 200 nm, that exhibit photonic stopbands around 600 nm. We present measurements of the optical gain of CdS quantum do...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 1997-09, Vol.71 (12), p.1616-1618 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The three-dimensional photonic crystals used in this study were synthetic opals, composed of submicron silica spheres, close-packed in a face-centered cubic structure with a period of 200 nm, that exhibit photonic stopbands around 600 nm. We present measurements of the optical gain of CdS quantum dots (QDs) embedded inside the interstitials between the silica spheres. Unlike the usual gain spectra of CdS QDs in glass matrices, which display maximum gain at energies of the first quantum-confined transitions, for QDs embedded in photonic crystals the gain maximum is shifted toward the high-frequency edge of the photonic stopband (2.2 eV) far below the absorption edge of the semiconductor (2.5 eV). Studies of temperature, intensity, and orientation dependencies of the gain spectra allow one to ascribe the observed effect to gain enhancement caused by multiple coherent Bragg scattering of light in the periodic photonic crystal. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.119995 |