Controlled-atmosphere chamber for atomic force microscopy investigations

The present work describes a simple chamber suitable for morphological investigations by implementing the atomic force microscopy (AFM) in controlled experiments. The novelty of our application stems from proposing an open system located in between the expensive, ultra-high-vacuum instruments and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2000-06, Vol.71 (6), p.2409-2413
Hauptverfasser: Sartore, Marco, Pace, Raffaele, Faraci, Paolo, Nardelli, Daniele, Adami, Manuela, Ram, Manoj K., Nicolini, Claudio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work describes a simple chamber suitable for morphological investigations by implementing the atomic force microscopy (AFM) in controlled experiments. The novelty of our application stems from proposing an open system located in between the expensive, ultra-high-vacuum instruments and those working in air conditions, both available on the market. The former are in fact designed to obtain a detailed inspection of the samples and to develop particular geometries on them, by means of nanolithography or nanomanipulation, while the latter are designed for and used in all the situations in which the environmental conditions do not cause artifacts, problems, or formation of spurious particles on the samples during imaging. We have developed an ad hoc system based on a high-vacuum chamber (up to 10 −6 Torr), which allows us to work under controlled-atmosphere conditions. The system, therefore, can be used with most of the samples which suffer from higher pressures, and exploits all the benefits arising from a controlled environment. We have equipped the chamber with an AFM and a sample-holder/mover. An external X–Y–Z motion controller, completely automated, allows the easy positioning of the sample under the sensing cantilever and the consequent relative approach. Experiments with the proposed system are presented, in which the control of environmental conditions during AFM measurements has been investigated with satisfactory results.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.1150628