Etched chalcogenide fibers for near-field infrared scanning microscopy

Typical infrared transmitting fibers comprise a chalcogenide core surrounded by a sulfur-selenide cladding, which is in turn coated with a polymer such as polyamide. For use in a near-field scanning infrared microscope (NSIM), such infrared-transmitting fibers must be tapered to a sharp point. Sharp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 1998-08, Vol.69 (8), p.2988-2993
Hauptverfasser: Unger, M. A., Kossakovski, D. A., Kongovi, R., Beauchamp, J. L., Baldeschwieler, J. D., Palanker, D. V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Typical infrared transmitting fibers comprise a chalcogenide core surrounded by a sulfur-selenide cladding, which is in turn coated with a polymer such as polyamide. For use in a near-field scanning infrared microscope (NSIM), such infrared-transmitting fibers must be tapered to a sharp point. Sharper points allow smaller apertures, which allow higher resolution. The light throughput of the probe depends on the length of the taper region: the longer the taper length, the further the infrared radiation must propagate through a waveguide smaller than its wavelength. Thus, shorter taper lengths should give higher light throughput. We describe a method for etching chalcogenide fibers to submicron points by simple chemical means. Methods are described for removal of the polyamide coating, stripping of the SSe cladding surrounding the core, and etching the chalcogenide fiber core to a sharp point. Removal of the polyamide coating is most easily accomplished by dissolution in 4-Chloro-1-butanol. The SSe cladding is removed by soaking the fiber in 0.1 M NaOH overnight. The chalcogenide core is tapered to a sharp point by immersion in a two-phase etching system, where the top phase is an inert organic solvent, and the bottom phase is a strong oxidant. Fibers both with and without cladding have been tapered. The resulting fibers have a taper length on the order of the core diameter, and terminate with a submicron end radius of curvature. The potential for use in a NSIM, as well as other uses, is discussed.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.1149045