Spatially resolved ion velocity distributions in a diverging field electron cyclotron resonance plasma reactor

Electron cyclotron resonance plasma sources are gaining widespread use in plasma processing because they offer high ion flux with controllable energy and thereby high etching and deposition rates with minimal damage. However, it is unclear how ion energy distributions evolve from source to wafer as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 1990-09, Vol.57 (12), p.1188-1190
Hauptverfasser: TREVOR, D. J, SADEGHI, N, NAKANO, T, DEROUARD, J, GOTTSCHO, R. A, PANG DOW FOO, COOK, J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron cyclotron resonance plasma sources are gaining widespread use in plasma processing because they offer high ion flux with controllable energy and thereby high etching and deposition rates with minimal damage. However, it is unclear how ion energy distributions evolve from source to wafer as a function of plasma parameters such as pressure, microwave power, and magnetic field strength. Therefore, we used Doppler broadened and shifted laser-induced fluorescent line profiles to measure Ar+ metastable ion velocity distributions downstream from a divergent magnetic field electron cyclotron resonance source. Spatially resolved distributions, measured at positions above and across a wafer platen, differ markedly from shifted Maxwell–Boltzmann functions. Ions are accelerated along the magnetic field direction by a weak (∼0.5 V/cm), ambipolar electrostatic field. The ion energy component perpendicular to the electric field corresponds to a temperature of only 0.46±0.10 eV. On the edges of the platen, the magnetic and electrostatic fields diverge causing angled acceleration of ions.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.103482