Elevated AT1 Receptor Protein but Lower Angiotensin II-Binding in Adipose Tissue of Rats with Monosodium Glutamate-Induced Obesity

Age-related hypertrophy of adipose tissue has been associated with a significant decrease in the number of angiotensin II receptors. The aim of this study was to investigate the characteristics of angiotensin II receptors in hypertrophic adipose tissue in animal obesity model using rats postnatally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormone and metabolic research 2001-12, Vol.33 (12), p.708-712
Hauptverfasser: Pintérová, L'., Železná, B., Ficková, M., Macho, L., Križanová, O., Ježová, D., Zórad, Š.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Age-related hypertrophy of adipose tissue has been associated with a significant decrease in the number of angiotensin II receptors. The aim of this study was to investigate the characteristics of angiotensin II receptors in hypertrophic adipose tissue in animal obesity model using rats postnatally treated with monosodium glutamate. Angiotensin II is known to induce hypertrophy in several tissues of the cardiovascular system and might do the same in fat tissue. The expression and binding properties of angiotensin II AT(1) receptors in epididymal fat tissue of adult rats were studied using membrane-binding, RT-PCR, and immunoblotting. The amount of AT(1) receptor mRNA did not differ significantly between obese and control rats. Despite that glutamate-treated rats displayed approximately 4-times more AT(1) receptor immunoreactive protein content in fat tissue cell membranes than the controls did. In contrast, binding experiments showed a significant (40.3 +/- 6.2 %) decrease of (125)I-Sar(1)-Ile(8)-angiotensin II-binding to fat tissue cell membranes in obese rats compared to controls. In conclusion, the present study provides evidence for the low binding properties associated with an accumulation of AT(1) receptor protein in cell membranes of the fat tissue of rats with glutamate-induced obesity. Discrepancies among angiotensin II-binding, AT(1) receptor protein, and AT(1) receptor mRNA levels indicate a possible defect in the receptor protein, which remains to be identified. The results obtained support a role of angiotensin II and AT(1) receptors in the pathogenesis of obesity.
ISSN:0018-5043
1439-4286
DOI:10.1055/s-2001-19132