Evolution of Chlorophyll Degradation: The Significance of RCC Reductase
Abstract: In angiosperms the key process of chlorophyll breakdown in senescing leaves is catalyzed by pheophorbide A oxygenase and RCC reductase which, in a metabolically channeled reaction, cleave the porphyrin macrocycle and produce a colourless primary catabolite, pFCC. RCC reductase is responsib...
Gespeichert in:
Veröffentlicht in: | Plant biology (Stuttgart, Germany) Germany), 2000-01, Vol.2 (1), p.63-67 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract:
In angiosperms the key process of chlorophyll breakdown in senescing leaves is catalyzed by pheophorbide A oxygenase and RCC reductase which, in a metabolically channeled reaction, cleave the porphyrin macrocycle and produce a colourless primary catabolite, pFCC. RCC reductase is responsible for the reduction of the C20/C1 double bond of the intermediary catabolite, RCC. Depending on plant species, RCC reductase produces one of the two C1 stereoisomers, pFCC-1 or pFCC-2. Screening of a large number of taxa for the type of RCCR revealed that the isomer produced is uniform within families. It also revealed that type RCCR-2 is predominant; RCCR-1 seems to represent a recent derivation which in unrelated lineages has evolved independently from RCCR-2. A third type of pFCC was produced by RCCR from basal pteridophytes and some gymnosperms; its structure is unknown. Collectively, the data suggest that the pathway of chlorophyll breakdown is very conserved in vascular plants. RCCR appears to represent a decisive addition to the catabolic pathway: it allows terrestrial plants to metabolize the porphyrin part of the chlorophyll molecule to photodynamically inactive final products that are stored in the vacuoles of senescing mesophyll cells. |
---|---|
ISSN: | 1435-8603 1438-8677 |
DOI: | 10.1055/s-2000-9149 |