Effects of Asymmetric Dynamic Loading on Intervertebral Disc – towards a Scoliosis Mimicking Organ Culture Model

Introduction The etiology of spinal deformity in idiopathic scoliosis is unclear to date. One of the suspected influences is the asymmetric loading condition involved in the disorder. The aim of this project is to test the hypothesis that asymmetric dynamic loading influences the morphological and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global spine journal 2016-04, Vol.6 (1_suppl), p.s-0036-1582636-s-0036-1582636
Hauptverfasser: Li, Zhen, Zhang, Ying, Straumann, Lukas, Lezuo, Patrick, Peroglio, Marianna, Alini, Mauro, Grad, Sibylle
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction The etiology of spinal deformity in idiopathic scoliosis is unclear to date. One of the suspected influences is the asymmetric loading condition involved in the disorder. The aim of this project is to test the hypothesis that asymmetric dynamic loading influences the morphological and biological characteristics of the intervertebral discs in scoliosis. The study is performed with organ cultured discs by using a custom-designed asymmetrical loading device. Material and Methods Bovine caudal discs (6–10 months) were used in current study. For symmetric dynamic loading (Parallel), discs were placed in custom-designed chambers, and compressed by parallel metal plates in a Bose mechanical testing device. For asymmetric dynamic loading (Wedge), a 10° wedge was placed underneath the discs to mimic the load bearing condition of discs in scoliotic patients. The discs were submitted to 2 different load regimes: (1) 1 hour dynamic loading (0.02–0.4 MPa, 1Hz) and 23 hours free swelling culture for 7 days; (2) 1 hour dynamic loading (0.02–0.4 MPa, 1Hz) and 23 hours static loading (0.2 MPa) for 7 days. Disc heights were measured with caliper before and after each loading. After 7 days of culture, gene expression levels of aggrecan (ACAN), type I and II collagen (COL1 and COL2), IL1, IL6, and MMP1 in the annulus fibrosus was analyzed by real-time PCR. Genes that have been found dysregulated in human scoliotic discs compared with healthy controls were also measured in the organ cultured discs, including MMP13, type X collagen (COL10), CXCR4, BMP3, S100A12, and S100A8 (n = 8). Results Disc height showed a constant drop in load regime 2, while a temporary decrease after 1h dynamic loading followed by free swelling recovery was noted in load regime 1. After 7th dynamic loading, the change in shape was greater in load regime 2 (disc height ratio wedged to non-wedged side of 0.81), than that in load regime 1 (height ratio of 0.87, p 
ISSN:2192-5682
2192-5690
DOI:10.1055/s-0036-1582636