Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem
This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapt...
Gespeichert in:
Veröffentlicht in: | Wuhan University journal of natural sciences 2023-10, Vol.28 (5), p.411-420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 5 |
container_start_page | 411 |
container_title | Wuhan University journal of natural sciences |
container_volume | 28 |
creator | SHI, Jiamin LU, Zhongshu ZHANG, Luyi LU, Sunjia CHENG, Yao |
description | This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper
L
2
-error estimate if the true solution has a special regular component. Numerical experiments are also given. |
doi_str_mv | 10.1051/wujns/2023285411 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_wujns_2023285411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_wujns_2023285411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1531-58ef76b71dfc118e7322ffb1905540043babf5701b1f26d8da57f84ba0091be43</originalsourceid><addsrcrecordid>eNpFkMtOwzAURC0EEqWwZ-kfCL03jptkWRUoSEVUgq4jO7luUlK7shNQ-HrCQ2I1oznSLA5j1wg3CBJnH_3ehlkMsYgzmSCesAnmuYiSPM9Oxw6QRjjic3YRwh5A5DLFCfvc2sY4f-BLZ9_J78iWxBdWtUNoAneGdzXx2yaUznaN7V0f-Eq15N8ay5-oq13FneVrNZCPFpU6dlSNe6gp8PGWvzR217fKtwPfkO96r0e-8U63dLhkZ0a1ga7-csq293evy4do_bx6XC7WUYlSYCQzMulcp1iZEjGjVMSxMRpzkDIBSIRW2sgUUKOJ51VWKZmaLNEKIEdNiZgy-P0tvQvBkymOvjkoPxQIxbe74sdd8e9OfAHe_GV-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem</title><source>Alma/SFX Local Collection</source><creator>SHI, Jiamin ; LU, Zhongshu ; ZHANG, Luyi ; LU, Sunjia ; CHENG, Yao</creator><creatorcontrib>SHI, Jiamin ; LU, Zhongshu ; ZHANG, Luyi ; LU, Sunjia ; CHENG, Yao</creatorcontrib><description>This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper
L
2
-error estimate if the true solution has a special regular component. Numerical experiments are also given.</description><identifier>ISSN: 1007-1202</identifier><identifier>EISSN: 1993-4998</identifier><identifier>DOI: 10.1051/wujns/2023285411</identifier><language>eng</language><ispartof>Wuhan University journal of natural sciences, 2023-10, Vol.28 (5), p.411-420</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1531-58ef76b71dfc118e7322ffb1905540043babf5701b1f26d8da57f84ba0091be43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>SHI, Jiamin</creatorcontrib><creatorcontrib>LU, Zhongshu</creatorcontrib><creatorcontrib>ZHANG, Luyi</creatorcontrib><creatorcontrib>LU, Sunjia</creatorcontrib><creatorcontrib>CHENG, Yao</creatorcontrib><title>Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem</title><title>Wuhan University journal of natural sciences</title><description>This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper
L
2
-error estimate if the true solution has a special regular component. Numerical experiments are also given.</description><issn>1007-1202</issn><issn>1993-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAURC0EEqWwZ-kfCL03jptkWRUoSEVUgq4jO7luUlK7shNQ-HrCQ2I1oznSLA5j1wg3CBJnH_3ehlkMsYgzmSCesAnmuYiSPM9Oxw6QRjjic3YRwh5A5DLFCfvc2sY4f-BLZ9_J78iWxBdWtUNoAneGdzXx2yaUznaN7V0f-Eq15N8ay5-oq13FneVrNZCPFpU6dlSNe6gp8PGWvzR217fKtwPfkO96r0e-8U63dLhkZ0a1ga7-csq293evy4do_bx6XC7WUYlSYCQzMulcp1iZEjGjVMSxMRpzkDIBSIRW2sgUUKOJ51VWKZmaLNEKIEdNiZgy-P0tvQvBkymOvjkoPxQIxbe74sdd8e9OfAHe_GV-</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>SHI, Jiamin</creator><creator>LU, Zhongshu</creator><creator>ZHANG, Luyi</creator><creator>LU, Sunjia</creator><creator>CHENG, Yao</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202310</creationdate><title>Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem</title><author>SHI, Jiamin ; LU, Zhongshu ; ZHANG, Luyi ; LU, Sunjia ; CHENG, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1531-58ef76b71dfc118e7322ffb1905540043babf5701b1f26d8da57f84ba0091be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHI, Jiamin</creatorcontrib><creatorcontrib>LU, Zhongshu</creatorcontrib><creatorcontrib>ZHANG, Luyi</creatorcontrib><creatorcontrib>LU, Sunjia</creatorcontrib><creatorcontrib>CHENG, Yao</creatorcontrib><collection>CrossRef</collection><jtitle>Wuhan University journal of natural sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHI, Jiamin</au><au>LU, Zhongshu</au><au>ZHANG, Luyi</au><au>LU, Sunjia</au><au>CHENG, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem</atitle><jtitle>Wuhan University journal of natural sciences</jtitle><date>2023-10</date><risdate>2023</risdate><volume>28</volume><issue>5</issue><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>1007-1202</issn><eissn>1993-4998</eissn><abstract>This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper
L
2
-error estimate if the true solution has a special regular component. Numerical experiments are also given.</abstract><doi>10.1051/wujns/2023285411</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-1202 |
ispartof | Wuhan University journal of natural sciences, 2023-10, Vol.28 (5), p.411-420 |
issn | 1007-1202 1993-4998 |
language | eng |
recordid | cdi_crossref_primary_10_1051_wujns_2023285411 |
source | Alma/SFX Local Collection |
title | Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Convergence%20Analysis%20of%20the%20Discontinuous%20Galerkin%20Method%20on%20Layer-Adapted%20Meshes%20for%20Singularly%20Perturbed%20Problem&rft.jtitle=Wuhan%20University%20journal%20of%20natural%20sciences&rft.au=SHI,%20Jiamin&rft.date=2023-10&rft.volume=28&rft.issue=5&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=1007-1202&rft.eissn=1993-4998&rft_id=info:doi/10.1051/wujns/2023285411&rft_dat=%3Ccrossref%3E10_1051_wujns_2023285411%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |