Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem
This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapt...
Gespeichert in:
Veröffentlicht in: | Wuhan University journal of natural sciences 2023-10, Vol.28 (5), p.411-420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper
L
2
-error estimate if the true solution has a special regular component. Numerical experiments are also given. |
---|---|
ISSN: | 1007-1202 1993-4998 |
DOI: | 10.1051/wujns/2023285411 |