Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem

This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wuhan University journal of natural sciences 2023-10, Vol.28 (5), p.411-420
Hauptverfasser: SHI, Jiamin, LU, Zhongshu, ZHANG, Luyi, LU, Sunjia, CHENG, Yao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper L 2 -error estimate if the true solution has a special regular component. Numerical experiments are also given.
ISSN:1007-1202
1993-4998
DOI:10.1051/wujns/2023285411