Stopping times occurring simultaneously
Stopping times are used in applications to model random arrivals. A standard assumption in many models is that they are conditionally independent, given an underlying filtration. This is a widely useful assumption, but there are circumstances where it seems to be unnecessarily strong. We use a modif...
Gespeichert in:
Veröffentlicht in: | Probability and statistics 2024, Vol.28, p.110-131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stopping times are used in applications to model random arrivals. A standard assumption in many models is that they are conditionally independent, given an underlying filtration. This is a widely useful assumption, but there are circumstances where it seems to be unnecessarily strong. We use a modified Cox construction along with the bivariate exponential introduced by Marshall and Olkin (1967) to create a family of stopping times, which are not necessarily conditionally independent, allowing for a positive probability for them to be equal. We show that our initial construction only allows for positive dependence between stopping times, but we also propose a joint distribution that allows for negative dependence while preserving the property of non-zero probability of equality. We indicate applications to modeling COVID-19 contagion (and epidemics in general), civil engineering, and to credit risk. |
---|---|
ISSN: | 1262-3318 1262-3318 |
DOI: | 10.1051/ps/2024001 |