A bending and stretching asymptotic theory for general elastic shallow arches

We present a bending model for a shallow arch, namely the type of curved rod where the curvature is of the order of the diameter of the cross section. The model is deduced in a rigorous mathematical way from classical tridimensional linear elasticity theory via asymptotic techniques, by taking the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Proceedings 1997, Vol.2, p.145-152
Hauptverfasser: Alvarez-Dios, José A., Viaño, Juan M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a bending model for a shallow arch, namely the type of curved rod where the curvature is of the order of the diameter of the cross section. The model is deduced in a rigorous mathematical way from classical tridimensional linear elasticity theory via asymptotic techniques, by taking the limit on a suitable re-scaled formulation of that problem as the diameter of the cross section tends to zero. This model is valid for general cases of applied forces and material, and it allows us to calculate displacements, axial stresses, bending moments and shear forces. The equations present a more general form than in the classical Bernoulli-Navier bending theory for straight slender rods, so that flexures and extensions are proved to be coupled in the most general case.
ISSN:1270-900X
1270-900X
DOI:10.1051/proc:1997001