Towards Sub-cellular Modeling with Delaunay Triangulation
In this article a novel model framework to simulate cells and their internal structure is described. The model is agent-based and suitable to simulate single cells with a detailed internal structure as well as multi-cellular compounds. Cells are simulated as a set of many interacting particles, with...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling of natural phenomena 2010, Vol.5 (1), p.224-238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article a novel model framework to simulate cells and their internal structure is described. The model is agent-based and suitable to simulate single cells with a detailed internal structure as well as multi-cellular compounds. Cells are simulated as a set of many interacting particles, with neighborhood relations defined via a Delaunay triangulation. The interacting sub-particles of a cell can assume specific roles – i.e., membrane sub-particle, internal sub-particle, organelles, etc –, distinguished by specific interaction potentials and, eventually, also by the use of modified interaction criteria. For example, membrane sub-particles may interact only on a two-dimensional surface embedded on three-dimensional space, described via a restricted Delaunay triangulation. The model can be used not only to study cell shape and movement, but also has the potential to investigate the coupling between internal space-resolved movement of molecules and determined cell behaviors. |
---|---|
ISSN: | 0973-5348 1760-6101 |
DOI: | 10.1051/mmnp/20083710 |