Polynomial bounds for the solutions of parametric transmission problems on smooth, bounded domains
We consider a family ( P ω ) ω ∈Ω of elliptic second order differential operators on a domain U 0 ⊂ R m whose coefficients depend on the space variable x ∈ U 0 and on ω ∈ Ω, a parameter space. We allow the coefficients a ij of P ω to have jumps over a fixed interface Γ ⊂ U 0 (independent of ω ∈ Ω)....
Gespeichert in:
Veröffentlicht in: | ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN) 2025-01, Vol.59 (1), p.137-166 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a family ( P ω ) ω ∈Ω of elliptic second order differential operators on a domain U 0 ⊂ R m whose coefficients depend on the space variable x ∈ U 0 and on ω ∈ Ω, a parameter space. We allow the coefficients a ij of P ω to have jumps over a fixed interface Γ ⊂ U 0 (independent of ω ∈ Ω). We obtain estimates on the norm of the solution u ω to the equation P ω u ω = f with transmission and mixed boundary conditions that are polynomial in the norms of the coefficients . In particular, we show that, if f and the coefficients a ij are smooth enough and follow a log-normal-type distribution, then the map Ω ∋ ω ↦ ‖ u ω ‖ H k +1 ( U 0 ) is in L p (Ω), for all 1 ≤ p < ∞ . The same is true for the norms of the inverses of the resulting operators. We also obtain similar integrability results for the parametric Finite Element approximations of the solution. We expect our estimates to be useful in Uncertainty Quantification. |
---|---|
ISSN: | 2822-7840 2804-7214 |
DOI: | 10.1051/m2an/2024057 |