hp -Robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs

In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN) 2024-01, Vol.58 (1), p.247-272
Hauptverfasser: Innerberger, Michael, Miraçi, Ani, Praetorius, Dirk, Streitberger, Julian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree p ≥ 1 and the (local) mesh size h . We further prove that the built-in algebraic error estimator which comes with the solver is hp -robustly equivalent to the algebraic error. The application of the solver within the framework of adaptive finite element methods with quasi-optimal computational cost is outlined. Numerical experiments confirm the theoretical findings.
ISSN:2822-7840
2804-7214
DOI:10.1051/m2an/2023104