hp -Robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs
In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly...
Gespeichert in:
Veröffentlicht in: | ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN) 2024-01, Vol.58 (1), p.247-272 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree
p
≥
1 and the (local) mesh size
h
. We further prove that the built-in algebraic error estimator which comes with the solver is
hp
-robustly equivalent to the algebraic error. The application of the solver within the framework of adaptive finite element methods with quasi-optimal computational cost is outlined. Numerical experiments confirm the theoretical findings. |
---|---|
ISSN: | 2822-7840 2804-7214 |
DOI: | 10.1051/m2an/2023104 |