Fabrication of copper sulfide nanoparticles from b oswellia ovalifoliolata leaf extract and their potential application of environmental pollutants removal, antibacterial activity and antioxidant activity
A nanomaterial has played a major role in protecting the environment-related issues. The prime reason for that nanomaterials synthetics approach is greener pathway, without using any hazardous chemicals and solvents. A huge number of plant-mediated metal sulfide nanoparticle (especially, Copper sulf...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2023, Vol.430, p.1150 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nanomaterial has played a major role in protecting the environment-related issues. The prime reason for that nanomaterials synthetics approach is greener pathway, without using any hazardous chemicals and solvents. A huge number of plant-mediated metal sulfide nanoparticle (especially, Copper sulfide) synthesis has been reported and is still successfully continuing, because of its cost effective manner, eco-friendly nature, simple approach, reaction was carried out room temperatur. The current reports to synthesis of Copper sulfide nanostuctured materials through the green patch way, using
Boswellia Ovalifoliolata
leaves extract. From the UV-Visible spectroscopy noticed nanoparticles absorbance value is around 325 nm. As identified by FT-IR spectroscopy, a variety sources of phytochemicals in the extract which are responsible for the reduction of metal ions and stabilizing of the nanoparticles. X-ray diffraction studies revealed that nanomaterials were crystalline in nature, average crystalline size around 11 nm. SEM revealed that nanoparticles are spherical in nature and average size is 38.43 nm. The current report emphasizes that the materials are an excellent catalyst activity for the reduction of environmental pollutant azo dyes, antibacterial and antioxidant activity. The current article highlights the reduction of the azo dyes, antibacterial and antioxidant activity so the nanomaterials are apromising for the reduction of polluntat dyes. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202343001150 |